



Date: 16-11-2024

Dept. No.

Max. : 100 Marks

Time: 01:00 pm-04:00 pm

SECTION A - K1 (CO1)

Answer ALL the Questions - (10 x 1 = 10)

1. Answer the following

- a) Show that the function $f(z) = \bar{z}$ is nowhere differential.
- b) Define harmonic function.
- c) State Maximum Moduli principle.
- d) Identify the singularity of the function $f(z) = e^{\frac{1}{z}}$.
- e) Find the residue of $f(z) = \frac{e^z}{z^2}$.

2. Fill in the blanks

- a) The function $f(z) = |z|^2$ is differentiable only at _____.
- b) If u and v are harmonic functions then $f(z) = u + iv$ is _____.
- c) A Maclaurin series is a Taylor series with centre _____.
- d) If a function is analytic at all points inside and on a simple closed curve C , then $\int_C f(z) dz = _____$.
- e) A conformal mapping preserves angle both in _____ and _____.

SECTION A - K2 (CO1)

Answer ALL the Questions (10 x 1 = 10)

3. MCQ

- a) Real part of $f(z) = \frac{1}{1-z}$ is _____
 (i) $\frac{1-x}{(1-x)^2 + y^2}$ (ii) $\frac{1+x}{(1-x)^2 + y^2}$ (iii) $\frac{1-x}{(1-y)^2 + x^2}$ (iv) $\frac{1-x}{(1-x)^2 - y^2}$.
- b) A function which is analytic everywhere in a complex plane is known as _____
 (i) harmonic function (ii) differential function (iii) nowhere differentiable function (iv) entire function.
- c) If the principal part of Laurent's series zero, then the Laurent's series reduces to _____
 (i) Maclaurin series (ii) Cauchy series (iii) Taylor's Series (iv) None of these.
- d) Singularities of rational functions are _____.
 (i) poles (ii) essential (iii) non isolated (iv) removable.
- e) Any bilinear transformation preserves _____.
 (i) cross ratio (ii) parabolic (iii) hyperbolic (iv) None of these.

4. True or False

- a) If Cauchy Riemann equations are satisfied at z_0 , then $f(z)$ is differentiable at z_0 .
- b) A domain that is not simply connected is said to be multiply connected.
- c) $u(x, y)$ is a harmonic conjugate of $v(x, y)$ if $f(z) = u(x, y) + iv(x, y)$ is an analytic function.

d)	A bounded entire function in the complex plane is constant.
e)	Point at which $f'(z)=0$ is called as critical point of the transformation.

SECTION B - K3 (CO2)

Answer any TWO of the following

(2 x 10 = 20)

5. Verify C-R equations for $f(z) = \begin{cases} \frac{xy^2}{x^2+y^2}, & z \neq 0 \\ 0, & z=0 \end{cases}$. Can you say the this function is differentiable at $z=0$?

6. Find the constant a so that $u(x, y) = ax^2 - y^2 + xy$ is harmonic. Find an analytic function $f(z)$ for which u is real. Also find its harmonic conjugate.

7. Expand $f(z) = \frac{z-1}{z+1}$ as a Taylor's series (i) about the point $z=0$ (ii) about the point $z=1$. Determine the region of convergence in each case.

8. Show that the circle $|z-3|=5$ is mapped into the circle $|w+\frac{3}{16}|=\frac{5}{16}$ by the transformation $w=\frac{1}{z}$.

SECTION C – K4 (CO3)

Answer any TWO of the following

(2 x 10 = 20)

9. Show that $f(z) = \sqrt{r} e^{i\theta}$ where $r>0$ & $0<\theta<2\pi$ is differentiable and find $f'(z)$.

10. Using Cauchy's integral formula, prove that $\int_C \frac{z dz}{z^2-1} = 2\pi i$, C is $|z|=2$.

11. Determine the residues of $\frac{z+1}{z^2-2z}$ at its poles.

12. Find the singularities for the following functions and classify them:
 (i) $\frac{\sin z}{z}$ (ii) $\left(\frac{z^2-2z+3}{z-2}\right)$.

SECTION D – K5 (CO4)

Answer any ONE of the following

(1 x 20 = 20)

13. State a necessary and sufficient condition for a complex valued function to be differentiable at a point z and defend them.

14. Expand $f(z) = \frac{z}{(z-1)(2-z)}$ in a Laurent's series valid for (i) $|z|<1$ (ii) $1<|z|<2$ (iii) $|z-1|>1$.

SECTION E – K6 (CO5)

Answer any ONE of the following

(1 x 20 = 20)

15. Device the proof of Cauchy's integral formula

16. Defend Cauchy's Residue theorem and hence evaluate $\int_0^{2\pi} \frac{d\theta}{5+4\sin\theta}$.

\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$

